

Tetrahedron Letters

Tetrahedron Letters 46 (2005) 5467-5469

Stereocontrolled synthesis of α -furyl amines and α -furyl carbinols

Giuliana Righi,* Roberto Antonioletti, Simona Ciambrone and Francesco Fiorini

Istituto di Chimica Biomolecolare-Sezione di Roma, c/o Dipartimento di Chimica, Università 'La Sapienza', P.le A. Moro 5, 00185 Roma, Italy

Received 17 May 2005; revised 10 June 2005; accepted 14 June 2005 Available online 5 July 2005

Abstract—A novel stereocontrolled synthesis of optically active α-furyl amines and α-furyl carbinols from α,β -aziridine and α,β -epoxy aldehydes using a *one-pot* aldol reaction–intramolecular enolcyclization is described. © 2005 Elsevier Ltd. All rights reserved.

Furans are considered very useful building blocks for a wide variety of natural or biologically active compounds; no doubt among their numerous derivatives α -furyl carbinols and α -furyl amines are the most employed in organic synthesis. The former, for example, are used as precursors in the synthesis of sugar, cyclopentenones, antimicotics and pheromones, 1 while the latter in the synthesis of α -amino acids, β -lactams, indolizidines, quinolizidines and piperidine alkaloids. 2

To these purposes, an important transformation of both α -furyl carbinols and α -furyl amines is their oxidative rearrangement: oxidants such as m-chloroperbenzoic acid, peracetic acid, bromine in methanol, pyridinium chlorochromate, NBS, etc., are able to transform them into the corresponding six-membered heterocycles [2H-pyran-3(6H)-ones and dihydropyridones, respectively, key intermediates in many synthetic sequences (Scheme 1)].

$$R$$
 O R O R O R $X = OH, NHBoc X $X = O, NBoc$$

Scheme 1.

Keywords: α,β-Epoxy aldehydes; α,β-Aziridine aldehydes; Aldol condensation; Enolcyclization; α-Furyl amines; α-Furyl carbinols. *Corresponding author. Tel.: +39 6490422; fax: +39 649913628;

"Corresponding author. Tel.: +39 6490422; fax: +39 64991 e-mail: giuliana.righi@uniroma1.it

Conventional routes developed for the preparation of chiral furyl alcohols include Sharpless asymmetric dihydroxylation of vinyl furans, 8 asymmetric catalytic hydrogenation of furyl ketones, 9 kinetic and enzymatic resolution of racemic furyl alcohols 10 and asymmetric catalytic alkylation of furaldehydes. 11 Likewise, chiral furyl amines are prepared through kinetic resolution of racemic furyl amines, 12 alkylation of chiral imines 13 or asymmetric aminohydroxylation of vinyl furans. 14 Despite this, to the best of our knowledge, no methods have ever been reported, which make use of open chain as starting material; in this letter we wish to describe a novel synthesis of these compounds from α,β -epoxy and α,β -aziridine aldehydes using a *one-pot* aldol reaction–intramolecular enolcyclization.

Recently, we have reported a stereocontrolled addition of boron enolates to *trans* α,β -epoxy¹⁵ and α,β -aziridine aldehydes¹⁶ of type **A**: the reaction proceeds with excellent *anti* stereoselectivity furnishing the corresponding β -hydroxy ketone **B** independently of the hindrance present at the heterocyclic ring (Scheme 2).

On the basis of the behaviour observed with some similar substrates, 17 we supposed that the particular

R

OBBu₂

R'

(2 eq.)

CH₂Cl₂, -78 to 25 °C

R

B

$$X = O$$
, NBoc

Scheme 2.

0040-4039/\$ - see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.06.069

$$\Pr\left\{ \begin{array}{c} O & O \\ \hline P \\ \hline \end{array} \right\} \left\{ \begin{array}{c} O & O \\ \hline \hline \end{array} \right\} \left\{ \begin{array}{c} O & O \\ \hline \hline \end{array} \right\} \left\{ \begin{array}{c} O & O \\ \hline \end{array} \right\} \left\{ \begin{array}{c} O$$

Scheme 3.

Table 1. Conditions tested to generate the enolate

Base	Solvent	Additive	Yield (%)
LDA	THF	_	15
LDA	THF	LiOH	20
LDA	THF	LiClO ₄	40
LDA	THF	LiCl	50
LDA	DME	LiCl	30
LDA	Et ₂ O	LiCl	50
Na ₂ CO ₃	CH_2Cl_2	_	20
Bu ₂ BOTf/DIPEA	CH_2Cl_2	_	80

structure of **B**, having a heterocyclic ring in γ , δ -position to a ketonic group, was suitable for an intramolecular cyclization through the formation of an enolate intermediate (Scheme 3). The Baldwin rules suggest the regioselective attack of the enolic oxygen in the γ position leading to the furan ring. ¹⁸

With this in mind, we submitted C, chosen as test compound, to various basic conditions in order to generate the enolate; in some cases Lewis acid was employed as additive to activate the heterocycle in the cyclization step. As shown in Table 1, the best result was obtained using the $Bu_2BOTf/DIPEA$ system, which afforded furan 2 in good yield.

Since Bu₂BOTf/DIPEA is also the system used in the aldolic condensation, we thought it was possible to obtain the furan structure directly during the addition reaction by a *one-pot* procedure, increasing both the ratio aldehyde/methyl ketone/base and the reaction time. Indeed, using a ratio α,β -epoxy aldehyde-methyl ketone-Bu₂BOTf/DIPEA = 1:2:4 in CH₂Cl₂ at room temperature, **2** was obtained in ca. 6 h in a satisfactory chemical yield (71%).

Moreover, it is possible to obtain the α -furyl carbinol 2 in optically active form; its enantiomeric excess, as determined by 1H NMR analysis of the corresponding MTPA ester, results the same as that of the starting chiral 2,3-epoxy alcohol, thus demonstrating that the reaction occurs with complete stereoselectivity.

The effectiveness of this methodology was tested also on the α,β -epoxy aldehydes **4** and **7**, where a sterically demanding substituent is present at position C-3 and using, besides pinacolone, also 3-methyl-2-butanone, a ketone which may enolize in two different directions. In Table 2 the satisfactory results obtained are reported, which demonstrate that this stereocontrolled reaction does not depend on the hindrance present at the oxirane

Table 2. α -Furyl carbinols from α , β -epoxy aldehyde¹⁹

α,β-Epoxy aldehyde	Ketone	α-Furyl alcohol	Yield (%)
1	0	2	71
		3	75
4		5	75
	0	6	81
7		8	65
		9	67

ring and, consequently, the methodology can be considered of general applicability.

The same reaction conditions, when employed on α,β -aziridine aldehyde 10, 13 and 16, afforded the expected α -furyl amines with good chemical yields (Table 3).

In conclusion, we have developed a new and general *one-pot* stereocontrolled aldol reaction–intramolecular enolcyclization, which allowed us to prepare α -furyl amines and α -furyl carbinols with various substitution patterns starting from α,β -aziridine aldehydes and α,β -epoxy aldehydes. Moreover, the possibility to obtain these compounds in optically active form makes this methodology very attractive; studies directed to the application in the synthesis of spiroketal pheromones²⁰ are currently underway.

Table 3. α -Furyl amines from α,β -aziridine aldehyde

α,β-Aziridine aldehyde	Ketone	α-Furyl amine	Yield (%)
10		11	72
		12	72
13		14	70
		15	71
16		17	78
		18	80

References and notes

- (a) Georgiadis, M. P.; Albizati, K. F.; Georgiadis, T. M. Org. Prep. Proc. Int. 1992, 24, 95–118; (b) Review: Piancatelli, G.; D'Auria, M.; D'Onofrio, F. Synthesis 1994, 867–888.
- Zhou, W. S.; Lu, Z. H.; Xu, Y. M.; Liao, L. X.; Wang, Z. M. Tetrahedron 1999, 55, 11959–11983.
- 3. Lefebvre, Y. Tetrahedron Lett. 1972, 133-136.
- Laliberte, R.; Medawar, G.; Lefebvre, Y. J. Med. Chem. 1973, 16, 1084–1089.
- Achmatowicz, O., Jr.; Bukowski, P.; Szechner, B.; Zwierzchowska, Z.; Zamojski, A. Tetrahedron 1971, 27, 1973–1996.
- Piancatelli, G.; Scettri, A.; D'Auria, M. Tetrahedron 1980, 36, 661–663.
- Georgiadis, M. P.; Couladouros, E. A. J. Org. Chem. 1986, 51, 2725–2727.
- Harris, J. M.; Keranen, M. D.; O'Doherty, G. A. J. Org. Chem. 1999, 64, 2982–2983.
- (a) Ohkuma, T.; Koizumi, M.; Yoshida, M.; Noyori, R. Org. Lett. 2000, 2, 1749–1751; (b) Prasad, K. R. K.; Joshi, N. N. Tetrahedron: Asymmetry 1997, 8, 173–176.

- (a) Kusakabe, M.; Kitano, Y.; Kobayashi, Y.; Sato, F. J. Org. Chem. 1989, 54, 2085–2091; (b) Kita, Y.; Naka, T.; Imanishi, M.; Akai, S.; Takebe, Y.; Matsugi, M. Chem. Commun. 1998, 1183–1184; (c) Ghanem, A. Org. Biomol. Chem. 2003, 1, 1282–1291.
- 11. Chan, K.-F.; Wong, H. N. C. Eur. J. Org. Chem. 2003, 82–91.
- 12. Wang, Z. M.; Zhou, W. S. Tetrahedron 1987, 43, 2935.
- (a) Liu, S. K.; Mi, A. Q.; Wu, L. J.; Jiang, Y. Z. Acta Chim. Sinica 1994, 52, 917; (b) Liao, L. X.; Wang, Z. M.; Zhou, W. S. Tetrahedron: Asymmetry 1997, 8, 173–176.
- Vogel, P. In Studies in Natural Products Chemistry; Atta-Ur-Rahmam, Ed.; Elsevier Press: Amsterdam, 1993; Vol. 12, p 275.
- Righi, G.; Spirito, F.; Bonini, C. Tetrahedron Lett. 2002, 43, 4737–4740.
- Righi, G.; Ciambrone, S. Tetrahedron Lett. 2004, 45, 2103–2106.
- (a) Al-Tel, T. H.; Al-Abel, Y.; Voelter, W. J. Chem. Soc., Chem. Commun. 1994, 1735–1737; (b) Antonioletti, R.; Cecchini, C.; Ciani, B.; Magnanti, S. Tetrahedron Lett. 1995, 36, 9019–9022; (c) Nakada, M.; Iwata, Y.; Takano, M. Tetrahedron Lett. 1999, 40, 9077–9080.
- Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734

 736.
- 19. Representative procedure for one-pot aldol reaction-intramolecular enolcyclization: di-n-butylboryl triflate (1 M in CH₂Cl₂, 4 mmol) was added dropwise to a stirred solution of ketone (2 mmol) in 4 mL of CH₂Cl₂ at 0 °C. After 10 min, ethyldiisopropylamine (4 mmol in 3 mL of CH₂Cl₂) was added dropwise. The reaction mixture was stirred at 0 °C for 30 min and then cooled to -78 °C. To the above enolate, a solution of α,β -aziridine aldehyde or α,β -epoxy aldehyde (1 mmol) in 2 mL of CH₂Cl₂ was added. The reaction was allowed to warm to room temperature and after ca. 6 h (TLC monitoring) was quenched with a mixture of MeOH (6 mL), aqueous phosphate buffer (4 mL, pH = 7) and H_2O_2 (4 mL of a)30% solution). The aqueous layer was extracted with two portions of AcOEt and the combined organic extracts dried (Na₂SO₄) and concentrated. The residue was purified on silica gel.
 - 1-(5-*tert*-Butyl-furan-2-yl)butan-1-ol, **2**: 1 H NMR (200 MHz, CDCl₃): δ 6.08 (d, J 2.9, 1H); 5.87 (d, J 2.9, 1H); 4.63 (t, J 6.6, 1H); 1.91–1.74 (m, 3H); 1.53–1.31 (m, 2H); 1.25 (s, 9H); 0.92 (t, J 7.3, 3H). 13 C NMR (50.3 MHz, CDCl₃): δ 163.6; 154.8; 105.9; 102.2; 67.5; 37.4; 32.6; 28.9; 18.8: 13.8.
 - [1-(5-*tert*-Butyl-furan-2-yl)butyl]-carbamic acid *tert*-butyl ester, **11**: 1 H NMR (200 MHz, CDCl₃): δ 6.01 (d, J 2.9, 1H); 5.84 (d, J 2.9, 1H); 4.85–4.55 (m, 2H); 1.87–1.52 (m, 2H); 1.43 (s, 9H); 1.42–1.25 (m, 2H); 1.24 (s, 9H); 0.91 (t, J 7.3, 3H). 13 C NMR (50.3 MHz, CDCl₃): δ 160.9; 155.2; 153.0; 105.7; 102.8; 79.3; 50.7; 36.5; 32.5; 28.3; 27.7; 19.0; 13.9.
- (a) Kametani, T.; Tsubuki, M.; Honda, T. *Chem. Pharm. Bull.* 1988, 36, 3706–3709; (b) DeShong, P.; Waltermire, R. E.; Ammon, H. L. *J. Am. Chem. Soc.* 1988, 110, 1901–1910; (c) Stok, J. E.; Lang, C.-S.; Schwartz, B. D.; Fletcher, M. T.; Kitching, W.; De Voss, J. J. *Org. Lett.* 2001, 3, 397–400.